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ABSTRACT

In the battery energy storage system, battery cells are
connected in series to increase the operating voltage. Due to the
difference in characteristics, the performance degradation of
cells is dissimilar. This paper proposes an online DC internal
impedance estimation for battery cells in the series string using
a matrix-switched capacitor converter, which is already verified
as useful for the series balancing of the cells. The simulation in
the hardware in the loop test rig shows good accuracy and the
feasibility of the proposed method.

Keywords: battery energy storage system, online DC
internal impedance, hardware in the loop test rig, series-
connected battery, Matrix-switched capacitor converter.

1. INTRODUCTION

To increase the operating voltage of the battery pack in
electric vehicles or energy storage systems, multiple battery
cells are connected in series. To ensure safety, the state of charge
(SOC) and state of health (SOH) of battery cells are monitored
regularly. When the SOC can be assessed by the degradation of
battery impedance, the DC Internal Resistance (DCIR) of
battery cells is monitored. Various impedance estimation
methods are reported in [1], where the methods are classified
into offline and online measuring techniques.

In [2, 3], a switched inductor converter is used to inject an
AC signal into battery cells and the electrochemical impedance
of the battery is estimated. However, it is hard to delimit the
impedance value between 2 battery cells. On the other hand, the
battery charger is utilized at the end of the charging process to
scan the battery impedance [4]. Unfortunately, it only can apply
for one battery at the time. To reduce the cost, an online
impedance spectroscopy estimation using switched capacitor
cell balancing is proposed [5]. Although the accuracy is high,
the incurred cost for the voltage and current sensors is its
disadvantage.

This paper proposes an online DCIR estimation for series-
connected battery cells by utilizing the matrix-switched
capacitor equalizer which is suggested in [6]. This paper
introduces the operation principle of the DCIR estimation
technique in section 2, hardware in the loop test results are
performed in section 3, and the conclusion is made in section 4.

2.  PROPOSED METHOD

The proposed method uses one matrix-switched capacitor
converter as showing in Fig. 1. Besides, one current sensor and
one voltage sensor are used to measure the balancing current and
the capacitor voltage, respectively. To discharge the capacitor
voltage to zero, a dummy load and a switch are used to discharge
the capacitor in the second state of the measuring process. With
the matrix-switch, the capacitor can connect with any battery
cell in the series string. Based on the measured transferring
current and the capacitor voltage, the DCIR of the battery is
estimated.
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Figure 1: Matrix-switched capacitor converter
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Figure 2: Equivalent circuit: (a) circuit topology; (b)
complementary PWM signal.
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Figure 3: Equivalent circuit in s-domain: (a) Phase A (to
—t1); (b) Phase B (t2 — t3).

The equivalent circuit of a measuring process is presented in
Fig. 2(a) and the switches are controlled by a complementary
PWM signal as in Fig. 2(b). The measuring process is divided
into two states: measuring state — Phase A (to — ti1) and
recalibrating state — Phase B (t2 — t3). Between two-state, a small
deadtime period is set to prevent the short-circuit. To analyze
the operation of the circuit, the circuit is transformed to
s-domain which is represented in Fig. 3, where R is the total
resistance of the loop (on-resistance of the switch, Rd, on, battery
impedance, Rb, and internal resistance of the capacitor, ESR), C
is the capacitance of the measuring capacitor, and V. is the
voltage of the capacitor. In phase A, switch Si is turned on while
Sz is kept off. Denote the time constant, 71, of the switched
capacitor is calculated by (1), where R; is calculated by (2).

7 =R.C M

R, = Ry + Rypp T ESR ©))
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The current flowing into the measuring loop, Iis, is
calculated by (3), where the AV is the difference between the
battery voltage and the initial voltage of the capacitor as in (4).

I _W-Velty) 1 =AV 1
R R ©)
0 0
AV =V, -Vo(ty) C)

By inverse-transforming to the time domain, the transferring
current equation becomes (5). Thus, the stored charge in phase
A is calculated by (6).

—t

AV T
iz(t):R—xe ! (5)
t -t

Qin(t1)=J.i1(t)dt=AVC(1-et1) ()

ty
Next, the voltage of the capacitor at time ¢ can be calculated
by (7), where V(o) is expected to be zero.

i
=S —av(i=e ")+ ) ™
By dividing (5) by (7), a function by R is derived as (8).
Denote G as the conductance of the circuit (9), the function

becomes (10).
-,

i) 1 eRC

AR N ®
(1-e™C)
1
Gy = ® ©
J R e R — ) (10)

-Gy
1- eT Vc (tI )

By applying the Newton-Raphson method with an initial
guess value, the chosen G, which makes the function f(G)
become zero, is calculated by (11), where f’(Gx(i)) is the
derivation of f{Gx(i)) and Gi(i) is the i-th iteration value of Gi.
As a result, the DCIR of the battery is calculated by (12).

GuitDh= Gx(i)—i"i(G"@ (11)
S(G()
DCIR = — ESR (12)

=——-R
G+
In phase B, the capacitor is discharged by a dummy load,
Raummy. To fully discharge the capacitor, the value of Rdaummy is
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Figure 4: Captured waveform of capacitor voltage and
current in the measuring process.

TABLE 1: Actual and estimated value of DCIR

Celll Cell 2 Cell3 Cell4
ACTUAL (mQ) 34 40 42 50
ESTIMATION (mQ) 33 38 41 52
ERROR (%) 2.9 5.0 2.4 4.0

calculated as (13), where f; is the switching frequency of the
switched capacitor converter.

1
Rdummy < 5}(7(:
JSs

(13)

When the measuring process of one cell is finished, the
switching decision is changed to assess the next cell in the string.
As aresult, the DCIRs of all cells can be estimated.

3. VERIFICATION OF THE PROPOSED
METHOD

To verify the proposed method, hardware in the loop test for
four series-connected 18650 battery cells (3.7V/2.6Ah) has been
implemented. Assume that all cells are fully charged but the
DCIRs of them are different as in Table 1. The capacitance is set
at 6800uF, the sum of Ry on and ESR is set at 100m<Q. Besides,
the Rdummy is set as 20mQ to discharge the capacitor voltage
to zero. The estimated DCIRs of battery cells are summarized in
Table L. The results show that the proposed method can estimate
the individual DCIR of battery cells within 5.5% tolerance.

4. CONCLUSION

This paper proposes an online DCIR estimation technique
based on the matrix-switch capacitor converter for series-
connected battery cells. With the matrix-switch structure, the
proposed method can estimate the individual DCIR value of
battery cells and equalize the energy between cells. The HIL test
shows that the tolerance of the method is within 5.5%. A
hardware experiment is under preparation for further verifying
of the proposed method.
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Table I: Actual and Estimated Value of DCIR
Cell 1

ACTUAL (mQ)
ESTIMATION (mQ)
ERROR (%)
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based on the existing switch-matrix flying capacitor equalizer is proposed.

v(t) '>§‘ the increased charge during phase A:

Z(t) = —— St AV Zt
(£) i(t) i i1(f) = o—em (5)
1S X

tq

_tl

Qin(t]) = f i.(t)dt = AV (1 — e?) c (6)

O v (1,) ’

* The capacitor voltage at the end of charging

time:
Operation principle during phase A 0 i
< The DCIR of battery is estimated by ve(ty) =—— =4Vl —e ™) +v(to) (7)

Hardware-in-the-loop tests for 4 applying the Newton-Rasphson numerical
series-connected 18650 battery cells algorithm as follow:  _,,
(3.7V/2.6Ah) are implemented. i(ty) 1 eRC 8) i&‘

SRR —ty R
All cells are fully charged but the vets) (1 — eRxC )
impedances are different as Table I. 1 C=—= RdummY§

Gy = R_ (9)
Initial tests setup: _fol
e ¢ i(t1)
= C=6800uF: FG) =6 a5 (10)
1 —e C c\*1
=  SumofR, and ESR 1s 100mQ;
i Go(i +1) =G, (i) — f(G:(D) (11) L)
B RdummyZZOmQ; f' (Gx(l)) 1 d]
. i
u ees — — — sC
]FS 1kHz. DCIR G,(i+1) Raon — ESR  (12) Rdummy§
. t

Proposed method can estimate the % During phase B, capacitor is completely VC(SZ) qD
individual DCIR of battery cells 1n discharged by dummy load:
series string within 5.5% error. Rayummy < 570 (13) Operation principle during phase B

S 1n series string can be estimated accurately.

'ﬂ&

Energy Conversion

e iTARHGE Y|

http://eccl.ulsan.ac.kr ' IE  THE KOREAN INSTITUTE OF POWER ELECTRONICS

.l




	Online DCIR Estimation for Series-connected Battery Cells using Matrix-Switched Capacitor Converter.pdf (p.1-2)
	KIPE Summer-V01-200727-ECCL-Halp.pdf (p.3)

